Idins220 does not appear to possess any type of enzymatic activity, such effects will have
Idins220 does not appear to possess any type of enzymatic activity, such effects will have to necessarily be indirect, most most likely by means of the assembly of multi-protein complexes exactly where the modifying enzyme and its target protein are brought in close proximity by indicates in the Kidins220 scaffold. This can be indeed a subject worth pursuing, because it might give a sturdy contribution to our understanding in the mechanisms by which Kidins220 regulates many aspects of synaptic plasticity. A further layer of complexity is offered by the recent identification of quite a few various Kidins220 isoforms, which show age- and tissue-specific distribution (Schmieg et al., 2015). Such variants decide the intracellular localization on the Kidins220 protein itself and of its molecular partners, as shown for the TrkA receptor (Schmieg et al., 2015). Nonetheless, this field of investigation is reasonably new and many from the already identified interactions could turn out to become isoform-specific.Frontiers in Cellular Neuroscience | www.frontiersin.orgMarch 2016 | Volume 10 | ArticleScholz-Starke and CescaKidins220ARMS in Neuronal PhysiologyTABLE 2 | Kidins220 interacting partners, and post-translational modifications (PTMs) triggered by the interactions. Interacting companion TMS Biological Activity binding internet site on Kidins220 Binding website on interacting partner Not the C-terminus Reciprocal PTMs ReferenceAMPAR-GluATransmembrane domains- and 2-syntrophin B cell antige n receptor (BCR) B-Raf Caveolin-1 CrkLPDZ-binding motif n.d. n.d. n.d. Proline-rich domain (residues 1089093) n.d.EphAPDZ domain n.d. n.d. n.d. SH3 domain (constitutive binding); SH2 domain (by binding phospho- Tyr1096 ) n.d.Kidins220 negatively regulates GluA1 phosphorylation at Ser831 and Ser845 n.d. n.d. n.d. n.d. n.d.Ar alo et al. (2010)Luo et al. (2005) Fiala et al. (2015) Deswal et al. (2013) Jean-Mairet et al. (2011) Ar alo et al. (2004, 2006)ICAM-3 IKK Kinesin 1 MAP1a, MAP1b, MAPn.d. n.d. KIM motif Residues 760n.d. n.d. KLC residues 8396 MAP1a LC2, MAP1b LCNa+ channels, Voltage-gated NMDA receptor subunits NR2A, NR2B, NR1 Olfactomedin 1 (Olfm1) p75NTR PDZ-GEF1 Pdzrn3 Protein Kinase D (PKD)n.d. n.d.n.d. n.d.n.d. Residues 1512762 Indirect binding by way of S-SCAM PDZ-binding motif n.d.n.d. Juxtamembrane area (residues 30015) n.d. 1st PDZ domain (residues 24939) n.d.Kidins220 and -syntrophin Phenmedipham Formula induce EphA4 Tyr phosphorylation; EphA4 induces Kidins220 Tyr phosphorylation n.d. n.d. n.d. Kidins220 induces phosphorylation of MAP1b HC, also as an increase in its total levels n.d. NMDAR overactivation reduces Kidins220 levels n.d. n.d. n.d. n.d. PKD phosphorylates Kidins220 on Ser919 upon phorbol ester treatment n.d. n.d. Kidins220 induces Ser phosphorylation of statmins n.d. n.d. n.d. n.d. n.d. n.d.Luo et al. (2005)Jean-Mairet et al. (2011) Singh et al. (2015) Bracale et al. (2007) Higuero et al. (2010)Cesca et al. (2015) L ez-Men dez et al. (2009)Nakaya et al. (2013) Kong et al. (2001) and Chang et al. (2004) Hisata et al. (2007) Andreazzoli et al. (2012) Iglesias et al. (2000)Septin 5 Sortin nexin 27 (SNX27) Statmins (SCG10, SCLIP)Residues 1603715 PDZ-binding motif Ankyrin repeatsN-terminal region (residues 12513) PDZ domain n.d.Park et al. (2010) Steinberg et al. (2013) Higuero et al. (2010)S-SCAM T-cell receptor (TCR) Trio TrkA, TrkB, TrkC Tubulin-III, acetylated and tyrosinated -tubulin VEGFR2, VEGFR3 n.d., not determined.PDZ-binding motif n.d. Ankyrin repeats Transmembrane domain n.d. n.d.PDZ4 domain n.d. N-terminus (spectrin re.