Survival. Prog. Pediatr. Cardiol. 18, 11121. https://doi.org/10.1016/s10589813(03)00084-5. three. Botto, L.

Survival. Prog. Pediatr. Cardiol. 18, 11121. https://doi.org/10.1016/s10589813(03)00084-5. three. Botto, L.

Survival. Prog. Pediatr. Cardiol. 18, 11121. https://doi.org/10.1016/s10589813(03)00084-5. 3. Botto, L.D., Mulinare, J., and Erickson, J.D. (2003). Do multivitamin or folic acid supplements cut down the risk for congenital heart defects Evidence and gaps. Am. J. Med. Genet. 121a, 9501. 4. Feng, Y., Wang, S., Chen, R., Tong, X., Wu, Z., and Mo, X. (2015). Maternal folic acid supplementation as well as the threat of congenital heart defects in offspring: a meta-analysis of epidemiological observational research. Sci. Rep. 5, 8506. https://doi.org/10.1038/srep08506. five. Botto, L.D., Mulinare, J., and Erickson, J.D. (2000). Occurrence of congenital heart defects in relation to maternal multivitamin use. Am. J. Epidemiol. 151, 87884. six. Hernandez-Diaz, S., Werler, M.M., Walker, A.M., and Mitchell, A.A. (2000). Folic acid antagonists during pregnancy along with the risk of birth defects. N. Engl. J. Med. 343, 1608614. https://doi.org/10.1056/ NEJM200011303432204. 7. Zhao, J.Y., Yang, X.Y., Gong, X.H., Gu, Z.Y., Duan, W.Y., Wang, J., Ye, Z.Z., Shen, H.B., Shi, K.H., Hou, J., et al. (2012). Functional variant in methionine synthase reductase intron-1 significantly increases the threat of congenital heart illness in the han Chinese population. Circulation 125, 48290. 8. Zhao, J.Y., Yang, X.Amphotericin B Y., Shi, K.H., Sun, S.N., Hou, J., Ye, Z.Z., Wang, J., Duan, W.Y., Qiao, B., Chen, Y.J., et al. (2013). A functional variant inside the cystathionine beta-synthase gene promoter substantially reduces congenital heart illness susceptibility in a Han Chinese population.Palivizumab Cell Res.PMID:31085260 23, 24253. https://doi.org/10.1038/cr.2012.135. 9. Zhao, J.Y., Qiao, B., Duan, W.Y., Gong, X.H., Peng, Q.Q., Jiang, S.S., Lu, C.Q., Chen, Y.J., Shen, H.B., Huang, G.Y., et al. (2014). Genetic variants reducing MTR gene expression raise the threat of congenital heart illness in Han Chinese populations. Eur. Heart J. 35, 73342. https://doi. org/10.1093/eurheartj/eht221. 10. Wang, D., Wang, F., Shi, K.H., Tao, H., Li, Y., Zhao, R., Lu, H., Duan, W., Qiao, B., Zhao, S.M., et al. (2017). Decrease circulating folate induced by a fidgetin intronic variant is related to reduced congenital heart disease susceptibility. Circulation 135, 1733748. https://doi.org/10.1161/ CIRCULATIONAHA.116.025164. 11. Jakubowski, H. (2019). Homocysteine modification in protein structure/ function and human illness. Physiol. Rev. 99, 55504. https://doi.org/ 10.1152/physrev.00003.2018.OPEN ACCESS12. Mei, X., Qi, D., Zhang, T., Zhao, Y., Jin, L., Hou, J., Wang, J., Lin, Y., Xue, Y., Zhu, P., et al. (2020). Inhibiting MARSs reduces hyperhomocysteinemia-associated neural tube and congenital heart defects. EMBO Mol. Med. 12, e9469. https://doi.org/10.15252/emmm.201809469. 13. Jakubowski, H., Zhang, L., Bardeguez, A., and Aviv, A. (2000). Homocysteine thiolactone and protein homocysteinylation in human endothelial cells: implications for atherosclerosis. Circ. Res. 87, 451. https://doi. org/10.1161/01.res.87.1.45. 14. Correa, A., and Marcinkevage, J. (2013). Prepregnancy obesity and the risk of birth defects: an update. Nutr. Rev. 71, S68 77. https://doi.org/ 10.1111/nure.12058. 15. Stothard, K.J., Tennant, P.W.G., Bell, R., and Rankin, J. (2009). Maternal overweight and obesity and also the risk of congenital anomalies: a systematic evaluation and meta-analysis. JAMA 301, 63650. https://doi.org/10.1001/ jama.2009.113. 16. Persson, M., Razaz, N., Edstedt Bonamy, A.K., Villamor, E., and Cnattingius, S. (2019). Maternal overweight and obesity and risk of.

Proton-pump inhibitor

Website: