Ared to its sodium salt. Biosci. Biotechnol. Biochem. 2011, 75, 50004. 24. Johansson, A.S.
Ared to its sodium salt. Biosci. Biotechnol. Biochem. 2011, 75, 50004. 24. Johansson, A.S.; Johansson-Haque, K.; Okret, S.; Palmblad, J. Ethyl pyruvate modulates acute inflammatory reactions in human endothelial cells in relation for the NF-kappaB pathway. Br. J. Pharmacol. 2008, 154, 1318326. 25. Kim, J.B.; Yu, Y.M.; Kim, S.W.; Lee, J.K. Anti-inflammatory mechanism is involved in ethyl pyruvate-mediated efficacious neuroprotection inside the postischemic brain. Brain Res. 2005, 1060, 18892. 26. Zeng, J.; Liu, J.; Yang, G.Y.; Kelly, M.J.; James, T.L.; Litt, L. Exogenous ethyl pyruvate versus pyruvate through metabolic recovery immediately after oxidative stress in neonatal rat cerebrocortical slices. Anesthesiology 2007, 107, 63040. 27. Fedeli, D.; Falcioni, G.; Olek, R.A.; Massi, M.; Cifani, C.; Polidori, C.; Gabbianelli, R. Protective effect of ethyl pyruvate on msP rat leukocytes broken by alcohol intake. J. Appl. Toxicol. 2007, 27, 56170. 28. Olek, R.A.; Ziolkowski, W.; Flis, D.J.; Fedeli, D.; Fiorini, D.; Wierzba, T.H.; Gabbianelli, R. The effect of ethyl pyruvate supplementation on rat fatty liver induced by high fat diet plan. J. Nutr. Sci. Vitaminol. (Tokyo) 2013, in press. 29. Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 707. 30. Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement together with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 26575. 31. Hancock, C.R.; Han, D.H.; Chen, M.; Terada, S.; Yasuda, T.; Wright, D.C.; Holloszy, J.O. High-fat diets result in insulin resistance despite an increase in muscle mitochondria. Proc. Natl. Acad. Sci. USA 2008, 105, 7815820. 32. Van den Broek, N.M.; Ciapaite, J.; de Feyter, H.M.; Houten, S.M.; Wanders, R.J.; Jeneson, J.A.; Nicolay, K.; Prompers, J.J. Elevated mitochondrial content rescues in vivo muscle oxidative capacity in long-term high-fat-diet-fed rats. FASEB J. 2010, 24, 1354364. 33. Turner, N.; Bruce, C.R.; Beale, S.M.; Hoehn, K.L.; So, T.; Rolph, M.S.; Cooney, G.J. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: Evidence against a function for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes 2007, 56, 2085092. 34. Wright, L.E.; Brandon, A.E.; Hoy, A.J.; Forsberg, G.B.; Lelliott, C.J.; Reznick, J.; Lofgren, L.; Oscarsson, J.; Stromstedt, M.; Cooney, G.J.; et al. Amelioration of lipid-induced insulin resistance in rat skeletal muscle by overexpression of Pgc-1 entails reductions in long-chain acyl-CoA levels and oxidative pressure. Diabetologia 2011, 54, 1417426.Nutrients 2013,35. Iossa, S.; Mollica, M.P.; Lionetti, L.; Crescenzo, R.; Botta, M.; Liverini, G. Skeletal muscle oxidative capacity in rats fed high-fat diet plan.Clazosentan Int.Podofilox J.PMID:24324376 Obes. Relat. Metab. Disord. 2002, 26, 652. 36. Zou, B.; Suwa, M.; Nakano, H.; Higaki, Y.; Ito, T.; Katsuta, S.; Kumagai, S. Adaptation of skeletal muscle characteristics to a high-fat diet regime in rats with different intra-abdominal-obesity susceptibilities. J. Nutr. Sci. Vitaminol. (Tokyo) 2003, 49, 24146. 37. Ritchie, I.R.; Dyck, D.J. Rapid loss of adiponectin-stimulated fatty acid oxidation in skeletal muscle of rats fed a high fat diet program is just not resulting from altered muscle redox state. PLoS One 2012, 7, e52193, doi:10.1371/journal.pone.0052193. 38. Campbell, S.E.; Tandon, N.N.; Woldegiorgis, G.; Luiken, J.J.; Glatz, J.F.; Bonen, A. A novel function for fatty acid translocase (FAT)/CD36: Involvement in lengthy chain fatty acid transfer in to the mitochondria. J. Biol. Ch.