Taneous KCFigure 1. Hypnogram (top) and its respective hypnospectrogram (whole-night time frequency
Taneous KCFigure 1. Hypnogram (top) and its respective hypnospectrogram (whole-night time frequency plot of EEG power) (middle) derived from Cz for subject 2. In hypnogram green dots mark the occurrence of KCs selected for the study and vertical lines 22948146 the definition of a “cycle” used in Figure 2. MA, microarousal, AW, awake, REM, rapid-eye movement sleep, NR1?, non-REM sleep stages 1?. Bottom part: Raw EEG of selected midline electrodes. A K-complex (A) from NREM stage II ending with a spindle (B) is seen (group KC01). Two individual sporadic Calcitonin (salmon) chemical information spindles are also seen (C, D). D is not included in this study because of its proximity to the KC. Sleep staging for all the subjects is provided as a lasagna plot [52] in supplementary figure. doi:10.1371/journal.pone.0054343.gSpindle Power Is Not Affected after Spontaneous KCFigure 2. All graphs show Spindle Band Power TBHQ chemical information developing over time: Raster images composed of individual time-frequency plots of EEG power near the frequencies of each subject’s individual spindle spectral frequency band, for 15 s before and after each event (sporadic spindles in A and KCs in B ). Average power change is shown below each raster. A1?: Spindles as reference events (at time zero). In the y-axis spindle event successive number; all averaged in A2. B1?: KCs as reference events, spindle data sorted by KC group (from top to bottom: KC00, KC01, KC10, KC11); all averaged in B2. C1?: KCs as reference events, spindle data sorted by KCs time of occurrence during the night and separated in successive sleep cycles; data from cycles 1? averaged in C2 6 respectively. D1?: KCs as reference events, spindles data sorted by the amplitude of KCs negative peak. D2 and D3 average data for the relatively larger and smaller KCs respectively. Relative absence of spindles is prominent 2? s after the negative peak (B1,C1,D1) and a relative long-term (10?5 s) reduction in their rate of appearance is shown for the about 80 top amplitude-sorted KCs (D1?). All images, from subject 1. doi:10.1371/journal.pone.0054343.gduring the baseline period [44]. The logarithm of this ratio was plotted for significant patterns.ResultsHypnograms and hypnospectrograms (Fig. 1) revealed that all subjects had normal sleep (Table 1). A total of 1239 K-complexes and 1162 sleep spindles from NREM stages II and III were identified and included in this study. K-complexes were separated into 4 groups: (a) KCs with spindles identified only just after their negative peak (group KC01, n = 619), (b) KCs with spindles identified only just before their negative peak (group KC10, n = 132), (c) KCs with spindles identified both before and after their negative peak (KC11, n = 255) and (d) KCs with no spindle visually identified either before or after them (group KC00, n = 233). These groups are compared to the results for fast spindles appearing as sporadic i.e. clearly away from KCs and delta waves, in order to assess effects possibly related to spindle activity alone rather than effects related to KCs.Spindles spectral frequency is stable for each subject but varies between subjects [45]. Therefore for every subject, the average power spectral density graph of one-minute EEG segments around all of the markers was used to determine the individual fast spindle frequency band and select a band width of 1.5 Hz encompassing the peak of the PSD. Focusing on these frequency limits, TFA plots of EEG segments around individual reference events (KCs or spindles) were placed on a.Taneous KCFigure 1. Hypnogram (top) and its respective hypnospectrogram (whole-night time frequency plot of EEG power) (middle) derived from Cz for subject 2. In hypnogram green dots mark the occurrence of KCs selected for the study and vertical lines 22948146 the definition of a “cycle” used in Figure 2. MA, microarousal, AW, awake, REM, rapid-eye movement sleep, NR1?, non-REM sleep stages 1?. Bottom part: Raw EEG of selected midline electrodes. A K-complex (A) from NREM stage II ending with a spindle (B) is seen (group KC01). Two individual sporadic spindles are also seen (C, D). D is not included in this study because of its proximity to the KC. Sleep staging for all the subjects is provided as a lasagna plot [52] in supplementary figure. doi:10.1371/journal.pone.0054343.gSpindle Power Is Not Affected after Spontaneous KCFigure 2. All graphs show Spindle Band Power developing over time: Raster images composed of individual time-frequency plots of EEG power near the frequencies of each subject’s individual spindle spectral frequency band, for 15 s before and after each event (sporadic spindles in A and KCs in B ). Average power change is shown below each raster. A1?: Spindles as reference events (at time zero). In the y-axis spindle event successive number; all averaged in A2. B1?: KCs as reference events, spindle data sorted by KC group (from top to bottom: KC00, KC01, KC10, KC11); all averaged in B2. C1?: KCs as reference events, spindle data sorted by KCs time of occurrence during the night and separated in successive sleep cycles; data from cycles 1? averaged in C2 6 respectively. D1?: KCs as reference events, spindles data sorted by the amplitude of KCs negative peak. D2 and D3 average data for the relatively larger and smaller KCs respectively. Relative absence of spindles is prominent 2? s after the negative peak (B1,C1,D1) and a relative long-term (10?5 s) reduction in their rate of appearance is shown for the about 80 top amplitude-sorted KCs (D1?). All images, from subject 1. doi:10.1371/journal.pone.0054343.gduring the baseline period [44]. The logarithm of this ratio was plotted for significant patterns.ResultsHypnograms and hypnospectrograms (Fig. 1) revealed that all subjects had normal sleep (Table 1). A total of 1239 K-complexes and 1162 sleep spindles from NREM stages II and III were identified and included in this study. K-complexes were separated into 4 groups: (a) KCs with spindles identified only just after their negative peak (group KC01, n = 619), (b) KCs with spindles identified only just before their negative peak (group KC10, n = 132), (c) KCs with spindles identified both before and after their negative peak (KC11, n = 255) and (d) KCs with no spindle visually identified either before or after them (group KC00, n = 233). These groups are compared to the results for fast spindles appearing as sporadic i.e. clearly away from KCs and delta waves, in order to assess effects possibly related to spindle activity alone rather than effects related to KCs.Spindles spectral frequency is stable for each subject but varies between subjects [45]. Therefore for every subject, the average power spectral density graph of one-minute EEG segments around all of the markers was used to determine the individual fast spindle frequency band and select a band width of 1.5 Hz encompassing the peak of the PSD. Focusing on these frequency limits, TFA plots of EEG segments around individual reference events (KCs or spindles) were placed on a.